# Case Presentation

MATT WORONCZAK

ADVANCED MUSCULOSKELETAL PHYSIOTHERAPIST

DANDENONG HOSPITAL

VICTORIA

### Scenario

- Supervising an intern
  - "22 year old male playing soccer yesterday, rolled ankle and unable to weightbear due to pain in lateral ankle and foot. Pt noticed loss of sensation, active dorsiflexion"
  - "Swollen lateral ankle and foot, unable to actively dorsiflex toes or foot. Absent sensation on foot with exception of little toe side. Neurovascular function normal otherwise"

### Scenario



Pictures are NOT of the patient, but purely for illustration of point

### Scenario



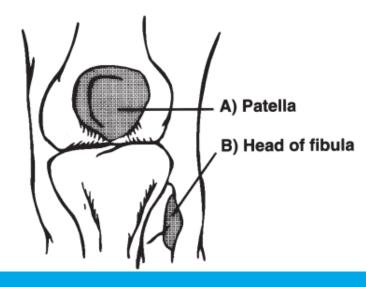
Pictures are NOT of the patient, but purely for illustration of point

### More information needed

▶ Patient had knee fully extended and sustained inversion injury to ankle while changing directions at soccer (which would have likely resulted in a varus / hyperextension force to the knee)

No PHx of knee or significant ankle problems

### Assessment


#### Knee

- Moderate effusion to knee
- ► AROM 0 to 90 = pain limited at either extreme
- ► Valgus 0,30 = Mild pain, not lax
- Varus 0,30 = at least 15 degrees of laxity in each, with guarding limiting accurate assessment
- ▶ Lachman's = unable to relax
- ▶ Tender around lateral hamstrings and posterolateral knee, as well as LCL



# OTTAWA KNEE RULE For Knee Injury Radiography



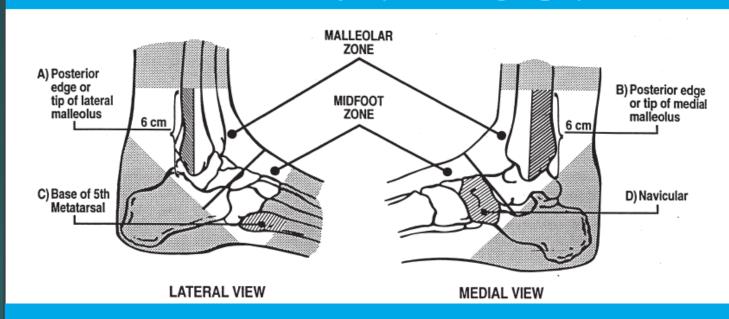


A knee x-ray series is only required for knee injury patients with any of these findings:

- 1. age 55 or older
  - OR
- 2. isolated tenderness of patella (no bone tenderness of knee other than patella)
  OR
- 3. tenderness of head of fibula
  - OR
- 4. inability to flex to 90° OR
- 5. inability to bear weight both immediately and in the emergency department for 4 steps (unable to transfer weight twice onto each lower limb regardless of limping)

Ottawa Health Research Institute

### Assessment


- Ankle / Foot
  - Moderate swelling to lateral ankle and foot
  - Absent sensation to anterolateral shin and dorsum of foot with exception of 5<sup>th</sup> ray
  - Otherwise NV function normal
  - ► AROM
    - ▶ Dorsiflexion = nil active of ankle or toes
    - ▶ Plantarflexion = normal ROM and power
    - Eversion = minimal power / active movement
    - ▶ Inversion = painful, but normal ROM and power
  - ▶ Tender distal fibula, including posteriorly over the distal 6cm
  - ▶ Tender 5<sup>th</sup> metatarsal base



# ANKLE RULES



### For Ankle Injury Radiography



- a) An ankle x-ray series is only required if there is any pain in malleolar zone and any of these findings:
  - 1. bone tenderness at A

OR

2. bone tenderness at B

OR

- 3. inability to bear weight both immediately and in ED
- b) A foot x-ray series is only required if there is any pain in midfoot zone and any of these findings:
  - 1. bone tenderness at C

OR

2. bone tenderness at D

OR

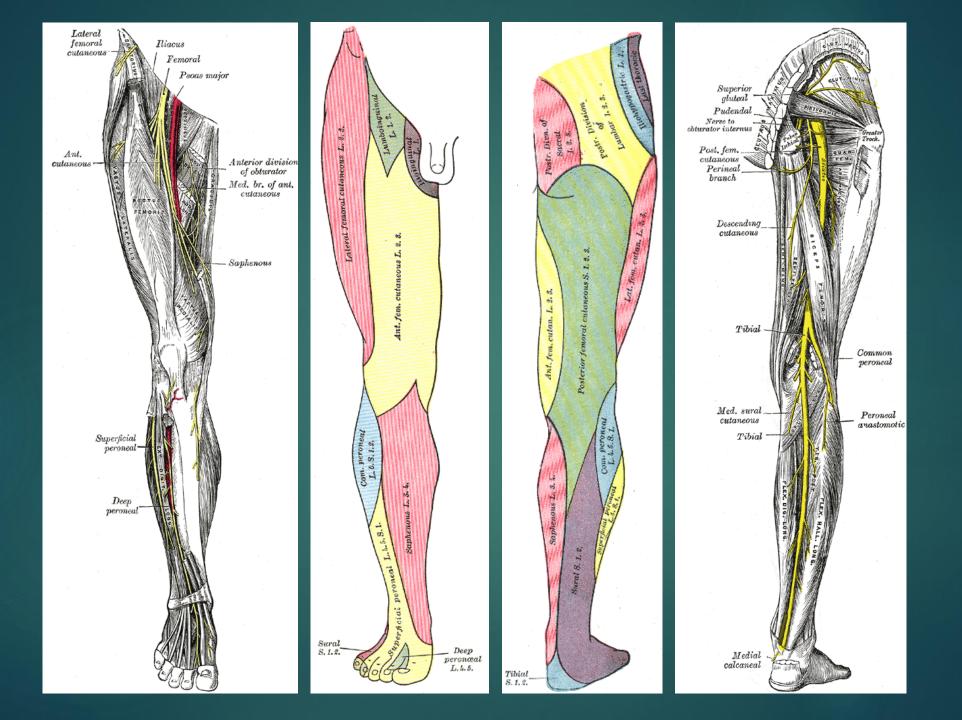
3. inability to bear weight both immediately and in ED

© Ottawa Health Research Institu

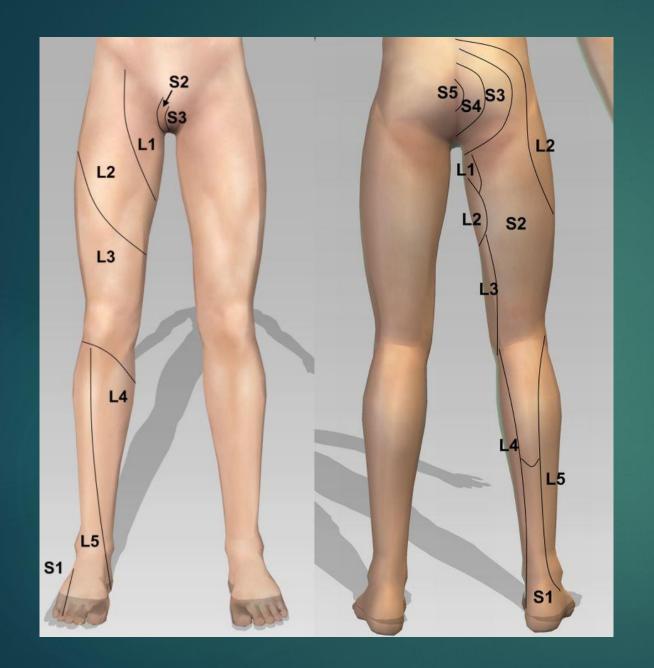














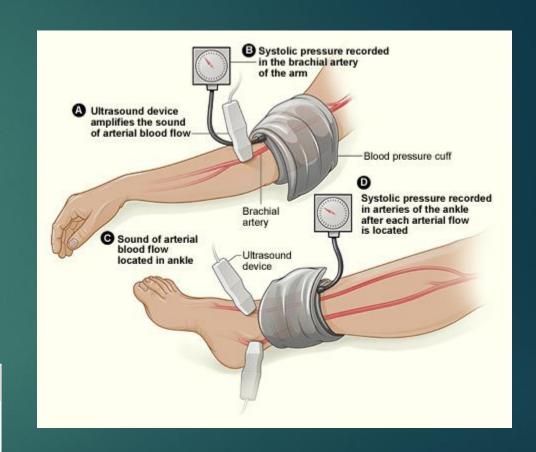



| Muscle                      | Nerve Supply               |
|-----------------------------|----------------------------|
| Biceps Femoris (short head) | Common Peroneal Nerve      |
| Extensor Digitorum Brevis   | Deep Peroneal Nerve        |
| Extensor Digitorum Longus   | Deep Peroneal Nerve        |
| Extensor Hallucis Brevis    | Deep Peroneal Nerve        |
| Extensor Hallucis Longus    | Deep Peroneal Nerve        |
| Peroneus Tertius            | Deep Peroneal Nerve        |
| Tibialis Anterior           | Deep Peroneal Nerve        |
| Peroneus Brevis             | Superficial Peroneal Nerve |
| Peroneus Longus             | Superficial Peroneal Nerve |



| Movement             | Segment |
|----------------------|---------|
| Hip Flexion          | L2/3    |
| Knee Extension       | L3/4    |
| Ankle Dorsiflexion   | L4/5    |
| Great Toe Extension  | L5      |
| Ankle Eversion       | L5/S1   |
| Ankle Plantarflexion | \$1/\$2 |

| Reflex     | Segment |
|------------|---------|
| Knee Jerk  | L3/4    |
| Ankle Jerk | \$1/2   |




### Ankle Brachial Index

$$ABI = \frac{P_{Leg}}{P_{Arm}}$$

- P<sub>Leg</sub> = Highest of the dorsalis pedis and posterior tibial systolic pressure
- P<sub>Arm</sub> = Highest of the left and right brachial systolic pressure

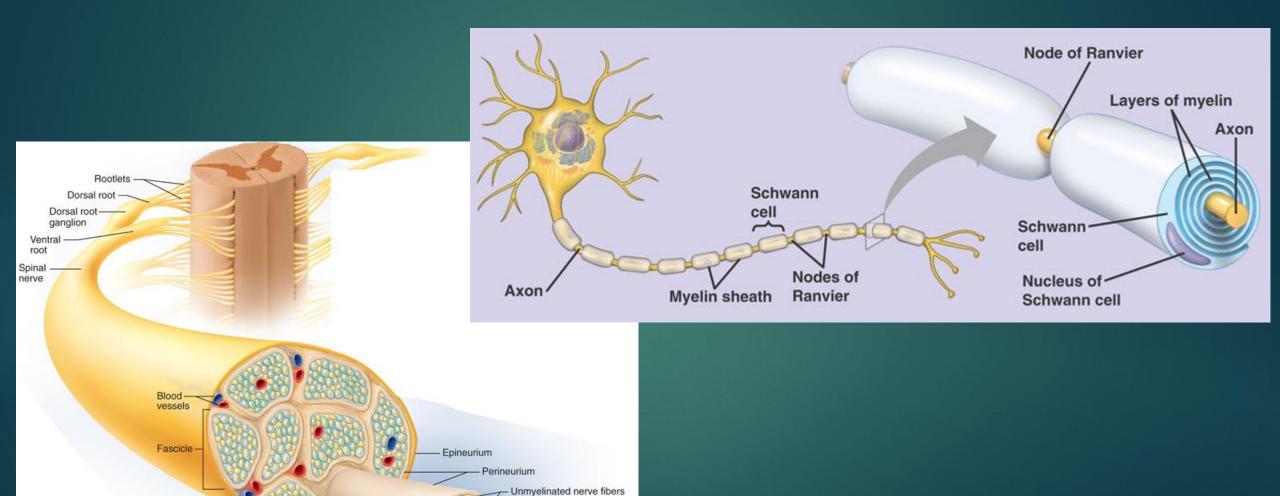
| ABI        | Interpretation              |
|------------|-----------------------------|
| <0.90      | Abnormal: Arterial Blockage |
| 0.90-0.99  | Borderline Abnormal         |
| 1.0 to 1.4 | Normal                      |
| >1.40      | Abnormal: Hardened Arteries |







- ▶ MRI
  - ► ACL Rupture
  - ▶ LCL Rupture
  - ► MCL Grade I-II
  - ► High Grade Posterolateral Corner Injury
  - ▶ Lateral Capsule Disruption
  - ► Common Peroneal Nerve Avulsion
- Discharged




### Clinic Followup and Progress

- ▶ 10/7 post injury
  - Still no active dorsiflexion
  - Not for surgery straight away
- ▶ 3/52 post injury
  - Still no active dorsiflexion
- 7/52 post injury
  - Still no active dorsiflexion
- ▶ 3/12 post injury
  - Out of knee brace, continuing with physio
  - Still no active dorsiflexion
  - For review in another 3/12

### Neuroanatomy

(a)

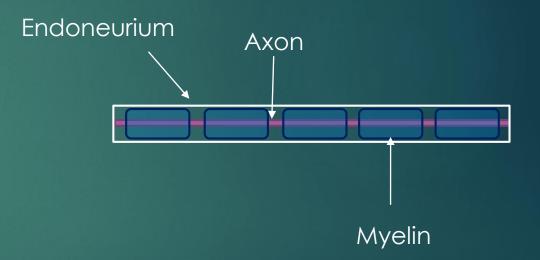


Myelinated nerve fibers

Endoneurium

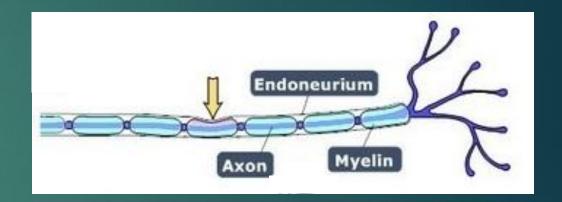
#### Seddon Classification For Nerve Injury

#### 1. Neuropraxia


 Mild stretch or contusion – no significant damage

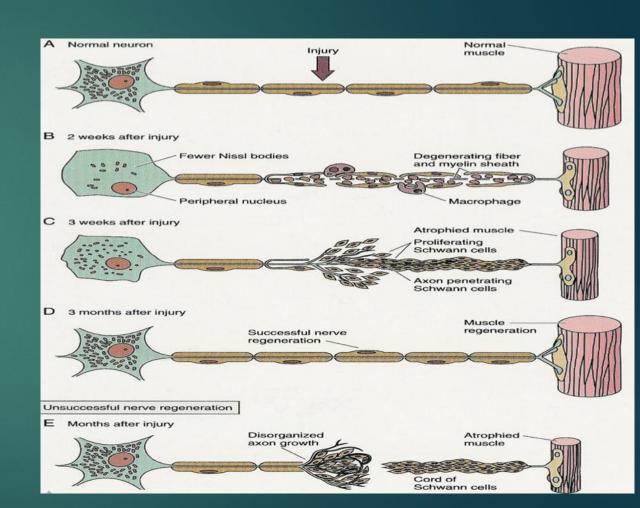
#### 2. Axonotmesis

 Axon disruption with an intact endoneurium


#### 3. Neurotomesis

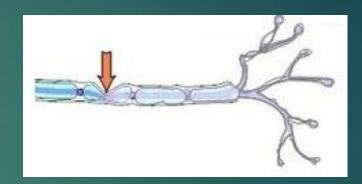
Complete peripheral nerve rupture




#### 1. Neuropraxia

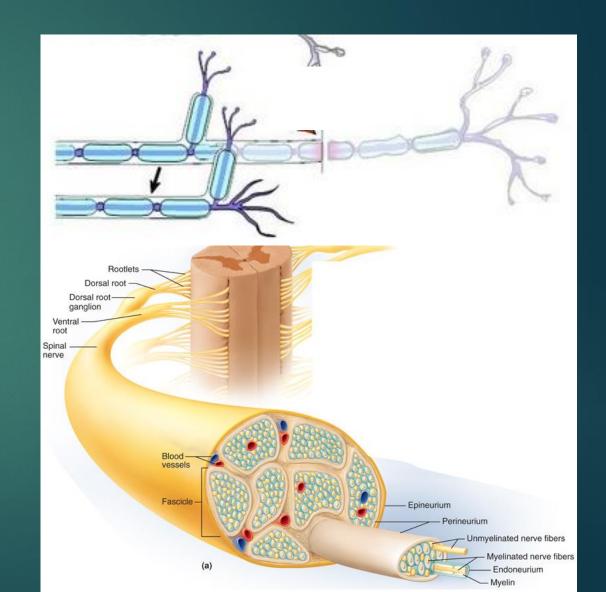
- Mild stretch or secondary contusion resulting in transient nerve dysfunction secondary to local ischaemia and demyelination
- Usually caused by blunt injury
- No significant damage to axon or endoneurium
- No Wallerian degeneration
- Conduction occurs proximal and distal to the injury, but not at the site of injury
- Profound motor loss +/- mild sensory changes
- Recovery in days to weeks




#### Wallerian Degeneration

- Where there has been significant disruption to a nerve, there will be degeneration distal to the lesion
- ▶ Begins within 24-36 hours of a lesion
- Prior to this, distal axon stump remains electrically excitable
- The axon degenerates, followed by the degradation of the myelin sheath
- The nerve fibre's neurilemma (outer lining of myelin sheath) does not degenerate and remains as a hollow tube.
- Within 4 days of the injury, the distal end of the portion of the nerve fibre proximal to the lesion sends out sprouts towards those tubes. If a sprout reaches the tube, it grows into it and advances about 1 mm per day, eventually reaching and reinnervating the target tissue.
- If the sprouts cannot reach the tube, for instance because the gap is too wide or scar tissue has formed, surgery can help to guide the sprouts into the tubes.

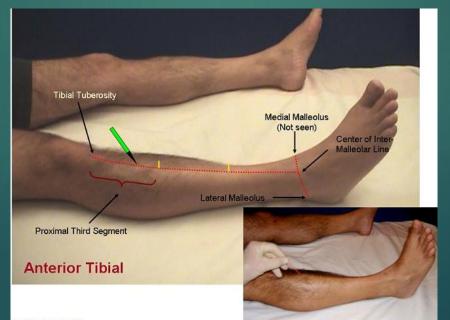



#### Axonotmesis

- Axon disruption with an intact endoneurium
- ► Complete motor loss +/- sensory changes
- Wallerian Degeneration
- Regeneration 0.5-1mm per day after a 1 month delay
- Recovery



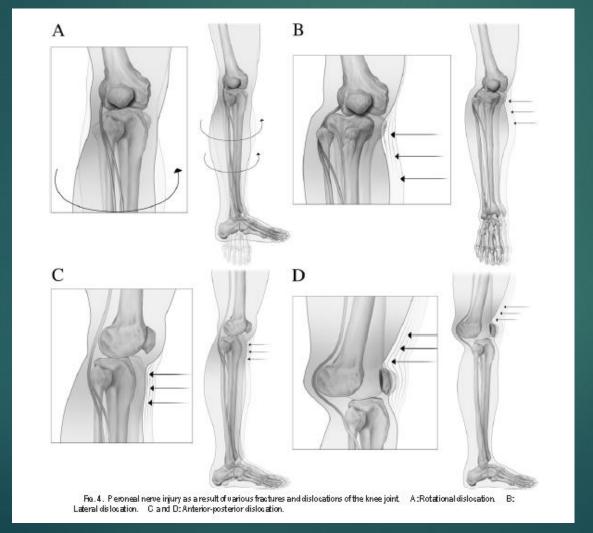
#### 3. Neurotomesis

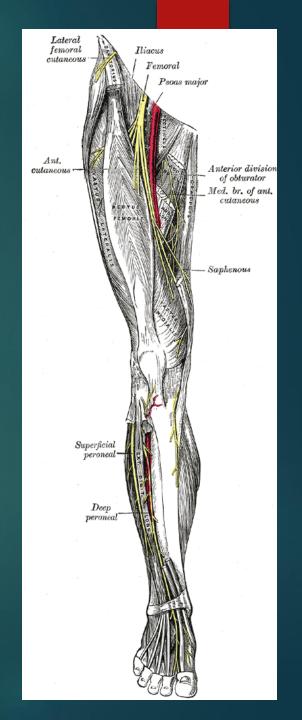

- Complete peripheral nerve rupture
- ▶ Involves both axonal disruption and:
  - ▶ 3a Involves ENDONEURIUM fair regrowth
  - ▶ 3b Involves PERINEURIUM poor regrowth
  - ▶ 3c Involves EPINEURIUM no regrowth
- Complete motor and sensory loss
- Wallerian Degeneration
- No nerve conduction distal to the injury after 3-4 days



### Nerve Conduction Studies

- Needle Electromyography
  - Changes of axonal degeneration may not appear in muscle for 2-3 weeks after injury, EMG not indicated within this time (typically suggested at 4-6 weeks if no signs of improvement)


(Goitz & Tomaino, 2003)




- Associated with ankle inversion injuries and also commonly associated with knee dislocations
  - ► 10-42% incidence of common peroneal nerve injury with knee dislocation / bicruciate ligament injury (Goitz & Tomaino, 2003)
- Higher correlation with knee dislocation and associated
  - ▶ Posterolateral corner injuries (26/27 in a study by Krych et al, 2014)
  - ▶ Fibular head fracture (39% vs 21%)
  - ► Vascular injury (15% vs 5%)
  - ▶ Higher BMI
  - Male (all from Peskun et al 2011)
- Multiple anatomical factors
  - ► Has limited excursion (only about 0.5cm) at the fibular head during knee motion, where it is tethered by its branches
  - Relative thickness of epineural to axonal tissue is low compared to other similarly sized nerves
    - ▶ Less protection from stretch injuries

Common peroneal nerve
Fibula

(Goitz & Tomaino, 2003)



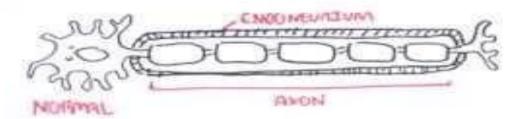



- Management
  - Incomplete nerve palsies generally have excellent recovery without intervention
  - ▶ With complete nerve palsies, there is little consensus regarding treatment:
    - Conservative Treatment
      - ▶ 0-50% have at chance of functional return without surgery

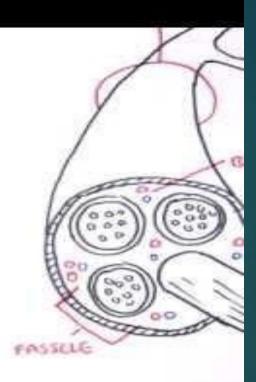
- Operative repair
  - Surgical repair usually necessitates immobilisation in excessive flexion (in contradiction to the management of the ligamentous injuries sustained / repaired)
    - Primary Repair (rarely done nerve frayed)
    - ▶ Neurolysis alone (releasing the nerve from its neuroma and surrounding scar tissue; epineurium still intact)
    - Neuroma excision and grafting
      - Graft length affects prognosis
        - <6cm = 75% at least grade 3 strength</p>
        - ► 6-12cm = 35% at least grade 3 strength
        - >12cm = 14% at least grade 3 strength

- Timing important (especially with increased length of graft)
  - ➤ 20cm = 200mm = > 200 days for regeneration!
- In closed injuries, operative treatment advised if there is no spontaneous regeneration at 3-4 months post injury (Garozzo et al, 2004)
  - ▶ Irreversible muscle atrophy, fibrosis and disappearance of functional neural endplates occurs by 9-12 months after denervation
  - ▶ Birch et al (1998) reported 48% good recovery if nerve repaired at 6/12, but only 9% at 12/12

- Operative CPN repair has a poorer prognosis compared to other peripheral nerves
  - Excessive length of nerve
  - Abundance of connective tissue
  - ► Force imbalance between intact plantarflexors and the passively stretched denervated foot extensors.
    - ▶ Early AFO to avoid contracture
    - ▶ Tibialis posterior tendon transfer


- ▶ Always look up!
- ▶ If has had knee dislocation, be wary of damage to the popliteal artery
  - ► Ankle Brachial Index
- CPN commonly injured in knee dislocations / bicruciate ligament injuries
  - Need AFO early to prevent contracture
  - Nerve Conduction Studies if no improvement at 4-6/52
  - ▶ If no improvement by 3-4/12, consider operative Mx as poor prognosis for operative Mx > 12/12




### Bibliography

- Birch R, Pascher A, Schwarzl F, Pierer G, Fellinger M, Passler JM (1998). Surgical disorders of the peripheral nerves. London: Churchill Liviingstone; 1998 p235-43
- Garozzo D, Ferraresi P & Buffatti P (2004). Surgical treatment of common peroneal nerve injuries: indications and results. Journal of Neurosurgical Sciences 43,3:105-112
- Krych AJ, Giuseffi SA, Kuzma SA, Stuart MJ, Levy BA (2014). Is peroneal nerve injury associated with worse function after knee dislocation? Clinical Orthopaedics and Related Research 472:2360-2636
- Peskun CJ, Chahal J, Steinfeld ZY & Whelan DB (2012). Risk factors for peroneal nerve injury and recovery in knee dislocation. Clinical Orthopaedics and Related Research 470:774-778

### CLASSIFICATION OF NERVE INJURY





